

[baseline] Easy String Baseline

[image: Documentation Status]
 [https://baseline.readthedocs.io/en/latest/?badge=latest][image: _images/baseline.svg]
 [https://travis-ci.org/dmgass/baseline]This tool streamlines creation and maintenance of tests which compare string
output against a baseline. It offers a mechanism to compare a string against
a baselined copy and update the baselined copy to match the new value when a
mismatch occurs. The update process includes a manual step to facilitate a
review of the change before acceptance. The tool uses multi-line string format
for string baselines to improve readability for human review.

Quick Start

Create an empty baseline with a triple quoted multi-line string. Place
the ending triple quote on a separate line and indent it to the level
you wish the string baseline update to be indented to. Add a compare of
the string being tested to the baseline string. Then save the file as
fox.py:

from baseline import Baseline

expected = Baseline("""
 """)

test_string = """THE QUICK BROWN FOX
 JUMPS
OVER THE LAZY DOG."""

assert test_string == expected

Run fox.py and observe that the assert raises an exception since
the strings are not equal. Because the comparison failed, the tool located
the triple quoted baseline string in the source file and updated it with the
mis-compared value. When the interpreter exited, the tool saved the updated
source file but changed the file name to fox.py.update:

from baseline import Baseline

expected = Baseline("""
 THE QUICK BROWN FOX
 JUMPS
 OVER THE LAZY DOG.
 """)

test_string = """THE QUICK BROWN FOX
 JUMPS
OVER THE LAZY DOG."""

assert test_string == expected

After reviewing the change with your favorite file differencing tool,
accept the change by either manually overwriting the original file or use
the baseline command line tool to scan the directory for updated
scripts:

$ python -m baseline *
Found baseline updates for:
 fox.py

Hit [ENTER] to accept, [Ctrl-C] to cancel

Pressing Enter causes the tool to overwrite the scripts with
the new baseline updates and remove the temporary .py.update files.

Run fox.py again and observe the assert does not raise an exception
nor is a copy of the source file update generated. If in the future the test
value changes, the assert raises an exception and causes a new source file
update to be generated. Simply repeat the review and acceptance step and you
are back in business!

[baseline] About

Contributors

	
	Dan Gass (dan.gass at gmail dot com)

	
	Primary author

	
	Adam Karpierz (akarpierz at gmail dot com)

	
	Python 3 support

	Packaging

	
	Peter Gessler (gessler.pd at gmail dot com)

	
	Travis C/I Setup

Development

	Repository

	https://github.com/dmgass/baseline

License

MIT License

Copyright (c) 2018 Daniel Mark Gass (dan.gass@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

[baseline] API Reference

	Classes

	Command Line

Classes

	
class baseline.Baseline

	Baseline string.

Support comparison of a string against this baseline. When the comparison
results in a mismatch, make a copy of the Python script containing the
baseline and modify the baseline to match the new value.

Command Line

$ python -m baseline --help
usage: baseline [-h] [-w] [path [path ...]]

Locate scripts with baseline updates within the paths specified and modify the
scripts with the updates found. (The scripts to be modified will be summarized
and you will be offered a chance to cancel before files are changed.)

positional arguments:
 path module or directory path

optional arguments:
 -h, --help show this help message and exit
 -w, --walk recursively walk directories

[baseline] Installation

Prerequisites

	Python [https://www.python.org/]

	version 2.7

	version 3.4 or higher

	Requirements for Installing Packages [https://packaging.python.org/tutorials/installing-packages/#requirements-for-installing-packages]
(located in the Installing Packages [https://packaging.python.org/tutorials/installing-packages/] tutorial within the
Python Packaging User Guide [https://packaging.python.org/]).

Install Steps

At a shell prompt, use pip [https://pypi.python.org/pypi/pip] to
automatically download and install baseline:

python -m pip install --upgrade baseline

[baseline] Release Notes

Versions increment per semver [http://semver.org/].

Note

Changes to experimental features only result in a bump of
the subminor (patch) version, including those introducing
backwards incompatibility.

1.2.1 2020-DEC-26

	Fix baseline command line interface support for specifying
directories to search. Previously, baseline inadvertently raised
an exception if a directory other than the default ('.') was
specified.

1.2.0 2020-DEC-22

	Add --force command line option to suppress acknowledgement
prompt.

	Add Python 3.9 support advertisement. (Regression testing
added to release process.)

	Remove Python 3.4 and 3.5 support advertisement. (Regression testing
removed from release process.) Nothing blocks installation, but no
promise exists that the package works with those interpreter versions.

1.1.2 2020-MAY-02

	Maintain file permissions and owner (both when generating update
file and when applying update file to original script). Previously,
file owner and permissions were set based on permission levels of
execution context which caused issues when executing under elevated
permission levels (e.g. sudo).

1.1.1 2020-MAY-02

	Improve experimental feature to support specifying an alternative
location. Add BASELINE_MOVE_UPDATES environment variable that
when set to YES, enables specifying an alternative location to
write update files. This master switch facilitates allowing CI/CD
systems to enable the feature while leaving the feature off in
local development while still using CI/CD resources (e.g. tox).

1.1.0 2020-MAY-01

	Add --clean (-c) option to baseline command line tool to
remove update files.

	Add --diff (-d) option to baseline command line tool that
shows difference and queries for overwrite permission for each
updated file.

	Change update file extension to .py.update so that testing
frameworks such as unittest or pytest ignore them.

	Add experimental feature to support specifying an alternative
location to write update files with the BASELINE_UPDATES_PATH
environment variable. (Note, BASELINE_RELPATH_BASE must be
set when using this feature.)

	Add experimental feature to print contextual differences whenever
a baseline mis-compare occurs. The feature may be turned on by
setting the environment variable (BASELINE_PRINT_DIFFS="YES")
or overriding the class attribute (Baseline.PRINT_DIFFS = True).

1.0.0 2020-MAR-19

	Improve baseline update when multiple values compared against the
same baseline. Generate a single multi-line baseline with headers
between the various alternative values. This facilitates updating
the baseline again.

	Support Python 3.8. Previously, when run using 3.8, the baseline
update tool misplaced baseline updates in the first triple quoted
string found above the baseline. (Python 3.8 stack frames now
report the line number of the first line in a statement rather
than the last.)

	Change behavior of Baseline to use raw strings when updating
baselines when possible and improves readability.

	Deprecate RawBaseline since Baseline now incorporates
its behavior.

Beta Releases

	
	0.2.1 (2018-05-19)

	
	Fix command line tool to not raise UnboundedLocalError exception.
Previously when tool was invoked with a wild card that yielded
no baseline updates to move, an exception was unexpectedly raised.

	
	0.2.0 (2018-05-18)

	
	Add --movepath command line option to move updated scripts to
a new location instead of overwriting the original script (for
use in continuous integration systems performing regression tests).

	
	0.1.3 (2018-03-29)

	
	Show command line help dump in API reference documentation.

	Fix development status classifier in setup configuration
(to make PyPi listing accurate).

	
	0.1.2 (2018-03-27)

	
	Add Travis C/I support.

	Change author name to commonly used form.

	Use Python 3.5 in tox for basic tasks.

	Remove “beta” label.

	
	0.1.1 (2018-03-25)

	
	Change author to match PyPi user name.

	
	0.1.0 (2018-03-25)

	
	Initial “beta” release.

[baseline] Usage

	One line Strings

	Multi-Line Strings

	Transforms

	Tips and Tricks

	Quick Tips

	Initial Baseline Value

One line Strings

To create a baseline string that contains a special update mechanism,
use triple quotes around the string and instantiate Baseline
with it. The resulting Python string object supports natural equality
comparisons:

hello.py

from baseline import Baseline

expected = Baseline("""Hello""")

test_string = "Hello World!"

assert test_string == expected

Run the script and observe that the assert raises an exception since
the strings are not equal. Because the comparison failed, the tool located
the triple quoted baseline string in the source file and updated it with the
miscompared value. When the interpretter exited, the tool saved the updated
source file using the file extension .py.update):

hello.py.update

expected = Baseline("""Hello World!""")

test_string = "Hello World!"

assert test_string == expected

After reviewing the change with your favorite file differencing tool,
accept the change by either manually overwriting the original file or use
the baseline command line interface to scan the directory for baseline
update files:

$ python -m baseline *
Found baseline updates for:
 hello.py

Hit [ENTER] to update, [Ctrl-C] to cancel

Pressing Enter causes the tool to overwrite the scripts with
the new baseline updates and remove the temporary .py.update files.

Multi-Line Strings

The triple quote usage in the Baseline instantiation provides a
consistent search and replace mechanism that supports embedding quotation
marks and newlines within a baselined string. Embedding newlines improves
the strings human readability which makes reviewing updates easier.

For multiline baselined string format, start the string on the line
following the opening triple quote delimiter. Insert a line after the
baselined string content to hold the closing triple quote delimiter.
Indent the closing triple quote delimiter to the indentation level of
the baselined string:

from baseline import Baseline

expected = Baseline("""
 THE QUICK BROWN FOX
 JUMPS
 OVER THE LAZY DOG.
 """)

test_string = "THE QUICK BROWN FOX\n JUMPS\nOVER THE LAZY DOG."

assert test_string == expected

The example above executes without an assertion because the tool strips
the leading indentation of every line in the baselined string based on
the indentation of the closing triple quote.

Transforms

Often strings to test against a baseline contain substrings that may vary
from one execution to the next. Before the comparison, normalize the
string by substituting a representative constant value. For example,
use a regular expression to transform a variable time into a constant
value:

import re
import time

from baseline import Baseline

expected = Baseline("""The time is HH:MM:SS.""")

test_string = "The time is {}.".format(time.strftime("%H:%M:%S"))

assert re.sub(r'\d\d:\d\d:\d\d', 'HH:MM:SS', test_string) == expected

If this is a common operation or there are multiple transformations needed,
override the TRANSFORMS class attribute and list the operations to
be performed. The tool performs each of the operations on the test string
before every comparison.

import re
import time

from baseline import Baseline

def normalize_time(s):
 return re.sub(r'\d\d:\d\d:\d\d', 'HH:MM:SS', s)

class NormalizedBaseline(Baseline):

 """Normalized string baseline."""

 TRANSFORMS = [normalize_time]

expected = NormalizedBaseline("""The time is HH:MM:SS.""")

test_string = "The time is {}.".format(time.strftime("%H:%M:%S"))

assert test_string == expected

Tips and Tricks

Quick Tips

	Take your time and be diligent in your review of baseline updates.
Similar to Python itself, this tool provides a lot of rope, don’t hang
yourself.

	Put comments above the baseline to provide information to a future
maintainer of the important aspects of the baseline that are the focus
of the test.

	Feel free to baseline strings with any style triple quotes embedded.
The tool adjusts and uses the alternative style. If the test string
contains both styles, transform one style into something else before
comparison.

	To archive resulting test script updates from a regression test run
within a continuous integration system, use the --movepath command
line option to move updated scripts to a new location instead of
overwriting the original script. T

Initial Baseline Value

To avoid the work of anticipating the exact content of the string baseline,
specify an empty baseline in multi-line format and set the indentation level
with the closing triple quote:

from baseline import Baseline

expected = Baseline("""
 """)

test_string = "THE QUICK BROWN FOX\n JUMPS\nOVER THE LAZY DOG."

assert test_string == expected

Run the script and let the tool fill in the string baseline. Then carefully
review the baseline update and accept.

Index

 B

B

 	
 	Baseline (class in baseline)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 [baseline] Easy String Baseline

_static/up-pressed.png

_static/up.png

